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Received 11 January 1978 

Abstract. We investigate the possibility of a Hawking-type effect due to the cosmological 
event horizon. We consider the reduced two-dimensional de Sitter metric. There appears 
to be radiation from the horizon towards the origin at temperature T defined by 

kT = J1z'f 2~ 

where 311' is the cosmological constant. The observer dependence of this radiation is 
discussed. 

1. Introduction 

It is generally believed that the presence of an event horizon will induce creation of 
particles. In the case of a black hole, the positive energy flux radiated to infinity can 
be pictured as follows (Hawking 1975). The event horizon separates two regions such 
that the Killing vector representing time translation is time-like in one region and 
space-like in the other. In the former ('physical') region, virtual pairs of particles are 
created. The positive energy particle contributes to the energy flux at infinity and the 
negative energy particle tunnels through the horizon4ecreasing the mass of the 
black hole in consistency with the energy flux at infinity. 

We carry over these arguments to the case of the cosmological event horizon that 
arises in the case where the stress-energy tensor of general theory of relativity is 

(1) RfiW-1 zg  &I' R + AgWw = KT&' 

with a non-zero A .  For an empty space-time 
R f i w  = Agww 

has, as its solution, the metric 

d s 2 =  -(1-+Ar2)dt2+(1-$Ar2)-1 d r 2 + r 2  d o 2  

where the coordinate r is understood such that the area of a sphere of radius r is 4wr2. 
Near the event horizon (r = J ( ~ / A ) =  I/JA') virtual pairs may again be produced, 

the positive energy particle being radiated towards the origin (the region of the 
time-like Killing vector) and the negative energy particle 'going over to the other side'. 
We shall restrict ourselves to the two-dimensional analogue 

ds2 = -( 1 - $Ar2) dr2 + (1 - $Ar2)-' dr2 (4 1 
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(We are still working on the complete four-dimensional case.) This metric may be 
understood to be a model that may be of help in the future complete four-dimensional 
model. Of course equation (1) does not imply equation (2) in the two-dimensional 
case, neither does equation (2) imply equation (4) in the two-dimensional case. 
However, direct evaluation of the curvature scalar for the metric (equation (4)) yields 
R = 211'. We are just on a constant (e, 4) surface of the de Sitter metric. We may 
choose to start with equation (4). In our model the metric is given by equation (4) only 
for r z 0 .  r < O  is not defined for the complete four-dimensional de Sitter metric. 
Formally we consider 'reflection' at r = 0. We use Misner-Thorne-Wheeler (Misner et 
a1 1973) sign conventions and shall closely follow the Christensen and Fulling (1977) 
treatment for the black hole. 

In 0 2 we derive the 'Hawking effect' (black-body effects) we are looking for. The 
relevant mathematical details have been outlined in the appendix. 

2. The two-dimensional cosmological model 

Christensen and Fulling have shown that the results of calculation for a two-dimen- 
sional Hawking problem can be reproduced by general physical arguments and by the 
knowledge of the trace anomaly of the two-dimensional scalar field. It is known 
(Davies er a1 1976) that the trace anomaly coefficient is T," =R/24.  As it is 
known that: (i) T,," conservation, (ii) zero trace, and (iii) particle production, are 
incompatible, we therefore consider the most general stress tensor that satisfies all the 
above conditions except the tracelessness and that has finite components with respect 
to a local orthonormal frame on the future cosmological horizon. 

The most general solution of the conservation equation 

V,T,,y = 0 (5 ) 

for T,," independent of time, for the cosmological background equation (4), may now 
be found. The conservation equations are 

&[( l  -A'r2)T,'] = -rA'T," 

a,T: = 0. 

Defining 
(A')-1/2 

H ( r )  = A' J r' Ta"(r') dr' 
r 

and defining 'tortoise' coordinate r* by dr/dr* = 1 - Ar2 as in the appendix; the 
general solution to equation (6)  is, in (t, r*)  coordinates, 

,, (7 ) T " = T,,'(')+ T,,'(2)+ T,,W(Ly(3) 

with 

TW"(') -(1- A'i2)-'H(r)+ T,"(r) 
( 0 ( 1  - A'r2)-'H(r) 
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where we have used T,*’* = Trr ;  T,*‘ = -T,’* and Tlr* = (1 -A‘r’)-’Trr. The signs have 
been chosen to have T,‘ positive for matter moving in the positive r direction. It can 
be shown by arguments similar to Christensen and Fulling (1977) that the stress tensor 
for black-body radiation in a two-dimensional flat space moving in the negative r 
direction is 

where T is the equilibrium temperature. Assigning a temperature to the radiation 
from the event horizon and comparing with (7) as r + 0 gives 

/flux/ = /KA’l= &?i(kT)’. (10) 

However, TWu(’) does not represent the complete stress tensor as we can easily verify: 
TUu(’)= -KA’ and TUv(’)= 0. Thus with K > 0 it represents negative energy flowing 
into the event horizon. To recover the form of T,’(rad) as r + 0, we may take Q = 2K. 
This however, would imply an infinite intensity at the horizon. Before we go forward, 
it is necessary to define our vacuum state. If we choose our vacuum state that is 
invariant under all the Killing fields of the de Sitter metric then we would find T, ,  to 
be simply proportional to Rg,, (K = 0). In the path integral formulation of particle 
creation in cosmology, Gibbons and Hawking (1977) introduce asymmetric consi- 
derations, namely in equation (4.20) of their paper, where they assume there to be no 
particles present on the ‘space-like surface’ in the distant past. Thus the only contri- 
bution to the ‘amplitude’ comes from the surface in the future. When the future and 
past horizons are chosen to be in ‘equilibrium’ then no radiation occurs. However, to 
consider particle creation by the universe, one is interested only in those particles 
which were not present at the infinite past (Hawking, private communication). The 
process by which particle creation can be motivated is by the ‘propogation’ of the 
particle amplitude from a point near the de Sitter horizon to a surface outside the 
future horizon and the propagation from the original point towards the observer near 
the origin (Gibbons and Hawking 1977). Thus the vacuum we are to choose must give 
a regular stress tensor on the future horizon. In this (Unruh) vacuum (Unruh 1976) 
the future and past horizons are not in equilibrium and thus no state invariant under 
the isometries (Fulling 1977) can yield a non-singular stress tensor. We thus choose 
the state that has T, ,  finite on the future horizon and may be singular on the past. 
(We have shown (see appendix) that T, ,  as measured in local frames on the future 
horizon shall be finite if T,‘ + Tp‘* and Tu, are finite and 

This condition is violated if Q = 2K.) 

density (= T,‘) approaches 
The resolution of this difficulty is to assign T,” a trace. With Q = 0 the total energy 

-Ti‘ r -rO -* H(0)-  Ta”(O)-KA’. (12) 

As the incoming radiation is in a thermal state, the energy density should be greater 
than the magnitude of the flux KA‘. Therefore Ta“(r) cannot be identically zero. 
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Using 

TQ"(r) = R/241r = A ' / 1 2 v  (13) 

H(O)-T,"(O)-KA'=KA' (14) 

and using the case for massless particles, for which density and flux are equal, i.e. 

we get, 

flux= -K A' = A'1481~. 

Thus from equation (9), we deduce that an observer near the origin should receive a 
black-body radiation corresponding to a temperature given by 

kT = Jil'l2.n. (15) 

It is known (see for example Rindler 1969) that the complete de Sitter space can 
be mapped onto a five-dimensional pseudosphere. It follows that any point on the 
pseudosphere can be transformed onto the origin r = t = 0. Our (r, t )  space covers 
only a part of this pseudosphere. However, we show in a manner exactly similar to 
Rindler that this too can be mapped onto a three-dimensional pseudosphere (a 
hyperboloid). Any point on this hyperboloid can be transformed to the origin of the 
(r, t )  space. 

Proof. Under the transformations (Rindler 1969) 

and 

a point (r, t )  transforms into a point satisfying 

W Z + r Z -  T 2  = a*,  (16) 

Now (W, r, T )  is space-like (from (16)), therefore, as a displacement along the 
surface of the pseudosphere (defined by (16)) is perpendicular to (W, r, t ) ,  the surface 
should contain the remaining one time-like and one space-like dimension-giving the 
right signature for an (r,  t )  space-time. 

Consider a point Po = Po( WO, ro, to) on this pseudosphere. We can perform a 
two-rotation in r and W to give Ro = 0 and then a two-rotation (a Lorentz trans- 
formation) ensuring TO = 0. Now as r = t = 0 implies W = a which is the transformed 
point Po, therefore the point Po is a map of r = t = 0. The transformed radial co- 
ordinate r' also has an event horizon at r' = (A/3)-'". It follows, therefore, that every 
point in this model can choose a vacuum to interpret the incoming radiation as being 
of the temperature given by equation (15) and as being centred on it. The above 
mapping does not refer to an isometry. The radiation is same from the two perspec- 
tives ( r  and r') only if we consider a different quantum state in each case, constructed 
(by the procedure outlined in our paper) relative to the coordinate system associated 
with that case. Thus all observers moving on time-like geodesics will see the radiation 
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at the same temperature even though they may be moving with respect to each other. 
Thus they do not observe the same particles (Gibbons and Hawking 1977, HEijiEek 
1977). 
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Appendix 

The ‘tortoise’ coordinate for the metric 

ds2 = -(1 -Atr2) dt2 + (1 - A’r2)-’ dr2 

may be defined, as done for the black hole by Misner er a1 (1973) by 

-=1-A’r2 dr .$ r*=-ln(-). 1 1 + JA‘r 
dr* ~ J A ’  I - f i r  

We define ingoing and outgoing coordinates as 

v = t+r* ;  u = t - r* .  

The coordinates appropriate for incoming waves through the horizon are the (v, r)  
coordinates. The metric takes the form 

ds2 = -(1- A’r2) dv2 + 2 dv dr 

for outgoing waves, the appropriate coordinates are (U, r), 

ds2 = -(1- A’r2) du2 - 2 du dr. 

In the (U, U )  coordinate system, the metric takes the form 

ds2 = -(1- A’r2) du dv 

Thus the (U, U )  system is not well behaved at r = (A’)-’’2. We can, however, define a 
‘Kruskal-type’ coordinate system 

and 

The metric becomes 
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This does not have any offending behaviour at r = A tensor is finite on the 
horizon, if and only if it is finite as measured in a regular coordinate system such as the 
(U, V )  system just defined. 

From 

1 - J Z r  
1 + a r  

U-2  

uv=- 

and the definition of the (U, V )  coordinates, we get 

Tuu =-Tu, AI 

Therefore Tfiy  is 'physically finite' on the future horizon (V = 0) if ,  as r + 

1 - f i r  
1 + f i r  

(-) ITuvl 

- - (' +ar)2/Ttf  + Tr*r*/ is finite, i.e. / T f f  + Trwr*/ is finite; 
4 

l - f i r  -2 

1 + a r  
(-) IT,, I is finite. ( c )  
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